您好,欢迎来到PK牛牛塑业有限公司网站!

收藏本站| 网站地图

pk牛牛_首页_一定牛

全国咨询服务热线:

030-20958767

推荐产品
联系我们
电话:030-20958767
传真:030-89561083
公司地址:浙江省玉环市芦浦医药包装工业园区
当前位置:主页 > pk牛牛 > 企业动态 >
注塑模具注塑机流量 控制阀ppt
浏览: 发布日期:2019-10-19

  1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

  WUST 节流口的流量特性; 流量负反馈; 节流阀、调速阀、分流阀等三种流量控制阀的原理、结构、主要性能和应用; 其它液压阀,如插装阀、电液比例阀、电液伺服阀的工作原理及应用。 7.6.3.1 直接位置反馈电液伺服阀 7.6.3.2 喷嘴挡板式力反馈电液伺服阀 串联减压式调速阀是由定差减压阀2和节流阀4串联而成的组合阀。 节流阀4充当流量传感器,用以调节节流阀口面积,人为地调节流量的大小。节流阀口不变时,定差减压阀2作为流量补偿阀口,通过流量负反馈,自动稳定节流阀前后的压差不变,从而保持其流量不变。 7.4.1 串联减压式调速阀的工作原理 图 7.8(a) p1 p3 (c) 简化符号 (b)符号原理 p1 p3 p2 图7.8 调速阀工作原理 1-减压阀芯; 2-节流阀芯 a c d 1 A2 e b 2 g h p1 ( a ) p2 A2 结构原理 (b) 详细符号 p1 p3 (c) 简化符号 p1 p3 p2 ( a ) 结构原理 p1 p3 p2 节流阀 定差减压阀 a c d A2 e b 2 g h A1 1 A3 k 保证节流阀前后压差不变 调节开口面积调节流量 7.4.2 温度补偿调速阀(节流阀) 温度补偿调速阀减压阀部分的原理和普通调速阀相同。 节流阀芯杆2由热膨胀系数较大的材料制成,当油温升高时,芯杆热膨胀使节流阀口关小,能抵消由于粘性降低使流量增加的影响。原理如下: 图 7.9 7.4.2 溢流节流阀 安全阀 分流阀的作用是使液压系统中由同一个油源向两个以上执行元件供应相同的流量(等量分流)、或按一定比例向两个执行元件供应流量(比例分流)时,用来使两个执行元件的速度保持同步的或定比的关系。集流阀的作用,则是从两个执行元件收集等同流量或按比例的回油流量,用以实现它们的速度同步或定比关系。分流集流阀则兼有分流阀和集流阀的功能。它们的图形符号如图7.11所示。 7.5 分流集流阀 分流集流阀又称为同步阀,它是分流阀、集流阀及分流集流阀的总称。 图7.11 分流集流阀符号 分流阀 集流阀 分流集流阀 代表两路负载流量q1和q2大小的压差值Δp1和Δp2通过p1 、 p2同时反馈到公共的减压阀芯6上,相互比较后驱动减压阀芯运动来调节q1和q2大小,使之趋于相等。 分流阀可以看作是由两个串联减压式流量控制阀结合为一体构成的。 7.5.1 分流阀 该阀采用“流量-压差-力”负反馈,用两个面积相等的固定节流孔1、2作为流量一次传感器,作用是将两路负载流量q1、q2分别转化为对应的压差值Δp1和Δp2。 7.5.1 分流阀 采用不同节流边时的两种结构形式 7.5.2 集流阀 只能保证执行元件回油时同步。 集流阀装在两执行元件的回油路上,将两路负载的回油流量汇集在一起回油; 两流量传感器具有共同出口,流量传感器的通过流量q1(或q2)越大,其进口压力p1(或p2)则越高。因此集流阀的压力反馈方向正好与分流阀相反;故集流阀和分流阀不能互为使用。 集流阀与分流阀的不同处表现为: 7.5.3 分流集流阀 挂钩式分流集流阀的结构原理图。 分流集流阀又称同步阀,它同时具有分流阀和集流阀两者的功能,能保证执行元件进油、回油时均能同步。 分流时,因p0>p1(或p0>p2),此压力差将两挂钩阀芯1、2推开,处于分流工况,此时的分流可变节流口是由挂钩阀芯1、2的内棱边和阀套5、6的外棱边组成; 集流时,因p0p1(或p0p2),此压力差将挂钩阀芯1、2合拢,处于集流工况,此时的集流可变节流口是由挂钩阀芯1、2的外棱边和阀套5、6的内棱边组成。只能保证执行元件回油时同步。 插装阀又称逻辑阀,是一种较新型的液压元件,它的特点是通流能力大,密封性能好,动作灵敏、结构简单,因而主要用于流量较大系统或对密封性能要求较高的系统。 7.6.1 插装阀 7.6 插装阀、比例阀、伺服阀 图7.16 插装阀的组成 1先导控制阀;2—控制盖板;3逻辑单元(主阀)、4,阀块体 插装阀由控制盖板、插装单元(阀套、弹簧、阀芯)及密封件、插装块体和先导控制阀(如先导阀为二位三通电磁换向阀)组成。由于插装单元在回路中主要起通、断作用,故又称二通插装阀。 图7.15 插装阀逻辑单元 7.6.1.1 插装阀的工作原理 图中A和B为主油路仅有的两个工作油口,K为控制油口(与先导阀相接)。当K口回油时,阀芯开启,A与B相通;反之,当K口进油时,A与B之间关闭。 二通插装阀相当于一个液控单向阀。加控制压力时不通。 7.6.1.2 方向控制插装阀 图7.17 插装阀用作方向控制阀 (a)单向阀;(b)二位二通阀 7.6.1.2插装式方向控制阀 图7.17 插装阀用作方向控制阀 (c)二位三通阀;(d)二位四通阀 7.6.1.3插装式压力控制阀 图7.18 插装阀用作压力控制阀 (a)溢流阀;(b)电磁溢流阀 7.6.1.4 插装式流量控制阀 图7.19 插装节流阀 电液比例阀是一种按输入的电气信号连续地、按比例地对油液的压力、流量或方向进行远距离控制的阀。与手动调节的普通液压阀相比,电液比例控制阀能够提高液压系统参数的控制水平;与电液伺服阀相比,电液比例控制阀在某些性能方面稍差一些,但它结构简单、成本低,所以它广泛应用于要求对液压参数进行连续控制或程序控制,而对控制精度和动态特性要求不太高的液压系统中。 7.6.2 电液比例阀 电液比例控制阀的构成,从原理上讲相当于在普通液压阀上,装上一个比例电磁铁以代替原有的控制(驱动)部分。根据用途和工作特点的不同,电液比例控制阀可以分为电液比例压力阀、电液比例流量阀、电液比例方向阀和电液比例复合阀四大类。下面对前三类比例阀作简要介绍。 比例电磁铁是一种直流电磁铁,与普通换向阀用电磁铁的不同主要在于,比例电磁铁的输出推力与输入的线圈电流基本成比例。这一特性使比例电磁铁可作为液压阀中的信号给定元件。 7.6.2.1 比例电磁铁 图7.20比例电磁铁 1一轭铁;2—线—弹簧; 10—衔铁;11一支承环;12—导向套 1一阀座;2—先导锥阀;3-轭铁;4r—衔铁;5—弹簧;6—推秆;7—线 电液比例溢流阀 用比例电磁铁取代先导型溢流阀导阀的调压手柄,便成为先导型比例溢流阀 7.6.2.2 电液比例溢流阀 阀下部与普通溢流阀的主阀相同,上部则为比例先导压力阀。该阀还附有一个手动调整的安全阀(先导阀)9,用以限制比例溢流阀的最高压力。 安全阀 先导比例阀 7.6.2.3 比例方向阀 7.6.2.4 电液比例调速阀 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中。 7.6.3 电液伺服阀 在流量型伺服阀中,要求主阀芯的位移XP与阀的输入的电流 i成比例,为了保证主阀芯的定位控制,主阀和先导阀之间设有位置负反馈,位置反馈的形式主要有直接位置反馈和位置-力反馈两种。 电液伺服阀多为两级阀,有压力型伺服阀和流量型伺服阀之分,绝大部分伺服阀为流量型伺服阀。 力马达 线圈运动,故运动惯性较大。 接受位移进行反馈 动圈式直接位置反馈伺服阀原理图 先导级放大元件 反馈杆 P 功率级放大 动圈式伺服阀 反馈杆 动圈式伺服阀 * 车辆06-1,2级 本章内容由郭齐升主讲 流量控制阀主要通过改变节流口的通流面积或液流通道的长度来改变局部阻力的大小,实现对流量进行控制,从而控制执行元件的运动速度。流量控制阀包括节流阀、调速阀、分流集流阀等。本章除讨论普通的流量阀之外,还要简要介绍插装阀、电液比例阀和电液伺服阀等内容。 本章主要内容为 : 本章重点是节流口的流量特性、流量负反馈、调速阀的工作原理和性能。学习时应从液压桥路和流量负反馈等基本概念着手理解这些阀的基本工作原理。 对于节流孔口来说,可将流量公式写成下列形式: (7.1) 7.1 节流口的流量特性 7.1.1 节流口流量公式 式中: 阀口通流面积; 阀口前、后压差; 由节流口形状和结构决定的指数,0.5≤m≤l ; 节流系数。 关于薄壁节流口的流量公式,我们只引用流体力学中的结论来说明。当 , m=0.5 时,流过薄壁小孔的流量公式由式(7.1)变为: 式中: Cd—流量系数; ρ—油液密度。 在流体力学中,我们可以遇到两大类节流口。 一类是细长孔,m=1。在液压工程中,往往把这类节流口当作固定(不可调如阻尼孔等)节流器使用。 q Δp 细长孔 m=1 簿壁口m=0.5 另一类是薄壁孔口,m=0.5。常常把这类孔口作为节流阀阀口来使用。(为什么?我们后面介绍) 流量与压差之间为二次抛物线关系,如图示。 上式也可写成 在上式中节流指数m为常数,那么阀口前后压差 也是常数时,这样调节面积A,就可以调节通过节流阀的流量q。 需要说明的是流量系数Cd并不一定是常数,节流口的结构、形状、压力差、油温都对Cd都有影响。精确的Cd值需靠试验确定。一般Cd=0.6~0.8。m 值也受多种因素影响,一般m =0.5~1。一般薄壁节流口的m 为0.5左右。尽管式(7-1)包含着一些非确定因素,但它毕竟给我们提供了一个对流量进行概略计算的简明表达式。 液压系统在工作时,希望节流口大小调节好后,流量 q稳定不变。但实际上流量总会有变化,特别是小流量时,流量稳定性与节流口形状、节流口前后压差以及油液温度变化等因素有关。 7.1.2 影响流量稳定性的因素 (1)压差变化对流量稳定性的影响 当节流口前后压差变化时,通过节流口的流量将明显随之改变,节流口的这种特性可用节流刚度T来描述。 (7.2) 节流刚度 m=0.5 q Δp 细长孔 m=1 ?1 ?2 ?3 Δp1 Δp2 1 2 3 簿壁口 流量刚度的物理意义如下: 当△p有某一增量时,q值相应的也有某一增量,q的增量值越大,说明流量的变化也就越大,从(7.2)式看,刚度就越小。反之,则刚度大。 它反映了节流阀能够抵抗 负载变化的能力 由式(7.2)可知: 节流刚度与节流口压差成正比,压差越大,刚度越大; 压差一定时,刚度与流量成反比,流量越小,刚度越大; 系数m越小,刚度越大。薄壁孔(m=0.5)比细长孔(m=1)的流量稳定性受ΔP变化的影响要小。因此,为了获得较小的节流指数m,应尽量避免采用细长孔节流口,应使节流口形式接近于薄壁孔口,以获得较好的流量稳定性。 油温升高,油液粘度降低。对于细长孔,当油温升高时,油的粘度降低,流量q 就会增加。所以节流通道长时温度对流量的稳定性影响大。Tμ q ,◇▲=○▼=△▲但是对于薄壁孔口一般无影响。 (2)油温变化对流量稳定性的影响 对于薄壁孔,油的温度对流量的影响是较小的,这是由于流体流过薄刃式节流口时为紊流状态,其流量与雷诺数无关,即流量不受油液粘度变化的影响;节流口形式越接近于薄壁孔,流量稳定性就越好。 节流阀的堵塞现象 节流阀的堵塞现象是指节流阀在小开度情况下工作时,油温压差都不变的条件下,所出现的流量脉动、☆△◆▲■间歇断流或者完全断流的现象。 这主要是由于油中的杂质及其一些带电的极化分子堵塞或者吸附于阀口所造成的。 (3)堵塞对流量稳定性的影响 当阀口的流量小时,流量稳定性与油液的性质和节流口的结构都有关。 产生堵塞的主要原因是: ①油液中的杂质或因氧化析出的胶质等污物堆积在节流缝隙处; ②由于油液老化或受到挤压后产生带电的极化分子,被吸附到缝隙表面,形成牢固的边界吸附层,因而影响了节流缝隙的大小。以上堆积、吸附物增长到一定厚度时,会被液流冲刷掉,随后又重新附在阀口上。这样周而复始,就形成流量的脉动; ③ 阀口压差较大时容易产生堵塞现象。 减小堵塞现象的措施有: · 适当选择节流口前后的压差,或用多个节流口串联。一般取ΔP=0.2~0.3MPa。 · 精密过滤并定期更换油液。•●在节流阀前设置单独的精滤装置,为了除去铁屑和磨料,可采用磁性过滤器。 · 节流口零件的材料应尽量选用电位差较小的金属,以减小吸附层的厚度。使带电的极化分子不易被吸附。 · 采用大水力半径的薄刃式节流口。一般通流面积越大、节流通道越短、以及水力半径越大时,节流口越不易堵塞。(通流面积/湿周) 7.1.3 节流口的形式 (1)直角凸肩节流口 h≤B;B — 阀体沉割槽的宽度。 直角凸肩节流口 D B h 本结构的特点是过流面积和开口量呈线性结构关系,结构简单,工艺性好。但流量的调节范围较小,小流量时流量不稳定,一般节流阀较少使用。 节流口是流量阀的关键部位,节流口形式在很大程度上决定着流量控制阀的性能。 (2)针阀式(锥形凸肩)节流口 图7.2(a) 针阀(锥形)节流口 D h ( a ) θ 特点:结构简单,可当截止阀用。★△◁◁▽▼调节范围较大。由于过流断面仍是同心环状间隙,水力半径较小,小流量时易堵塞,温度对流量的影响较大。一般用于要求较低的场合 。 (3)偏心式节流口 节流口由偏心的三角沟槽组成。阀芯有转角时,节流口过流断面面积即产生变化。本结构的特点是,小流量调节容易。但制造略显得麻烦、阀芯所受的径向不平衡力较大,只适宜用在低压场合。 (4)轴向三角槽式节流口 沿阀芯的轴向开若干个三角槽。阀芯做轴向运动,即可改变开口量h,从而改变过流断面面积。 本节流口结构简单,水力半径大,调节范围较大。小流量时稳定性好,最低稳定流量为50ml/min。因小流量稳定性好,是目前应用最广的一种节流口。 φ l D h α 图7.2(c) 三角槽式节流口 图7.2(d) 周向缝隙式节流口 (5)周向缝隙式节流口 阀芯上开有狭缝,旋转阀芯可以改变通流面积大小。这种节流口可以作成薄刃结构,从而获得较小的稳定流量,但是阀芯受径向不平衡力,只适于低压节流阀中。 本结构为薄壁节流口,壁厚约0.07~0.09mm,流量受温度的影响小、不易堵塞、最低稳定流量约20ml/min 。阀芯的轴向位移可改变节流口过流断面的面积。节流口易变形,工艺复杂是本结构的缺点。一般用于伺服控制。 (6)轴向缝隙式节流口 图7.2(e) 轴向缝隙式节流口 7.2流量负反馈 当通过调节面积对流量进行调整以后,负载变化可以引起阀前后的压差变化,从而引起流量的波动,这方面可以通过流量负反馈来加以控制。与压力负反馈一样,流量负反馈控制的核心是要构造一个流量比较器和流量测量传感器。流量阀的流量测量方法主要有“压差法”和“位移法”两种。 压差法是把节流口前后的压差变化检测后形成反馈力与指令弹簧力比较以恒定压差,借以恒定流量(调速阀)。 位移法是把节流口的开口位移变化检测后形成反馈力与指令弹簧力比较以恒定开口面积,借以恒定流量。 1、串联减压式流量负反馈控制 所谓“恒压源串联减压式调节”是指系统采用恒压源供油,流量调节阀口RQ、流量控制阀口Rx与负载Z相串联,此时阀口Rx称为减压阀口。这是一种先减压后节流的流量控制形式。 7.2.1 流量的“压差法”测量 流量控制阀口Rx 流量传感器Rq 代表流量大 小的压差力 指令力 流量传感器RQ 流量控制阀口Rx 代表流量大 小的压差力 指令力 流量传感器RQ 2、并联溢流式流量负反馈控制 指令力 代表流量大 小的压差力 流量控制阀口Rx “流量源并联溢流式调节”则是指系统用恒流量源供油,流量控制阀口Rx与负载Z相并联。泵出口压力可随负载变化。 此时阀口Rx称为溢流阀口。当流量qL变化时,流量传感器Rq上的压力差pq也会发生变化,以此作为控制信号,调节溢流阀口Rx的开口度,使流量朝着误差减小的方向变化,从而维持负载负载流量qL基本恒定。据此原理设计而成的流量阀称为“溢流节流阀”。 3、串联与并联式对比 图7.3 调速阀 溢流节流阀 特点:恒压源、串联,调速阀 特点:恒流源、并联,溢流节流阀 与“压差法”相反,◆▼位移法是在主油路中串联一个基本恒定的压差pq,但节流面积A0可变的节流口Rq作为流量的一次传感器。因传感器的压差恒定,故液阻Rq及传感器阀芯位移xq将随负载流量qL而变化。常用于比例流量阀控制中。◆●△▼● 7.2.2 流量的“位移法”测量(简单说明) 根据节流口流量公式,有: 图7.4 7.3 普通节流阀 7.3.1 节流阀 液流从进油口流入经节流口后,从阀的出油口流出。本阀的阀芯3的锥台上开有三角形槽。转动调节手轮1,阀芯3产生轴向位移,★▽…◇节流口的开口量即发生变化。阀芯越上移开口量就越大。 阀芯 调节手轮 螺帽 阀体 (a) 当节流阀的进出口压力差为定值时,●改变节流口的开口量,即可改变流过节流阀的流量。但是,当负载变化时,会造成进出口压差改变,使节流阀控制的流量发生变化。所以它一般可用在负载F基本不变,对流量的控制精度要求不高的液压系统中。 另外,节流阀还可和其它阀,例如单向阀、定差减压阀、定差溢流阀,构成组合式节流阀。 图 7.5 7.3.2 单向节流阀 流体正向流动时,与节流阀一样,节流缝隙的大小可通过手柄进行调节;当流体反向流动时,靠油液的压力把阀芯4压下,下阀芯起单向阀作用,单向阀打开,可实现流体反向自由流动。 节流阀芯分成了上阀芯和下阀芯两部分。 右往左节流状态 左往右单向直通状态 根据“流量负反馈”原理设计而成的流量阀称为调速阀。根据“串联减压式”和“并联分流式”之差别,又分为调速阀和溢流节流阀2种主要类型,调速阀中又有普通调速阀和温度补偿型调速阀两种结构。 调速阀和节流阀在液压系统中的应用基本相同,主要与定量泵、溢流阀组成节流调速系统。 节流阀适用于一般的系统,■□而调速阀适用于执行元件负载变化大而运动速度要求稳定的系统中。即速度精度要求较高的场合。 7.4 调 速 阀 *PK牛牛注册

全国服务热线:
030-20958767
电话:030-20958767传真:030-89561083
公司地址:浙江省玉环市芦浦医药包装工业园区
Copyright 2019 pk牛牛_首页_一定牛 网站地图 ICP备案号: 鲁ICP备699321573号
pk牛牛_首页_一定牛